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SUMMARY

Consider nested row-column designs in which each square (termed a superblock) has
2 rows and 2 columns. Let an intersection of a row and column be a plot, and assume
that only one treatment is allocated per plot. If two of the entries per superblock
are filled with a control treatment (treatment 0), such that the control treatment
occurs once per row and once per column, then there are a number of ways that the
remaining plots may be filled.

This paper examines two different designs which are non-binary, but which have
the same eigenvectors as basic contrasts. The treatment versus control contrasts are
the contrasts of concern. The two designs are compared for fixed effect analysis,
then for recovering information from the different strata. It is shown that when plot,
row and column information are recovered and combined, the design providing lower
variance on the control vs. treatment contrasts is dependent on the plot, row and
column stratum variances.

KEY WORDS: nested row-column designs, canonical efficiency factors, controls, com-
bining information

"

1. Introduction

This paper examines small blocks with nested rows and columns, containing a control

and a number of test treatments. When blocks have size 2 and there are a number

of test treatments and a control, Cox (1958) recommends assigning the control to
one plot in each block and a test treatment to the remaining plot. There are natural
situations in experiments where the block size is two: for example pairs of twins
(Cox, 1958), paired organs e.g. kidneys (Cox, 1958), pairs of ears in an experiment
comparing ear-tags for cows, and the two halves of a leaf (Samuel and Bald, 1933).

1 Supported by a studentship from EPSRC and supervision from R.A. Bailey
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Majumdar and Notz (1983) give a theorem for A-optimality in Incomplete Block
Designs for comparing treatments with a control. They state that A-optimality trans-
lates into the minimum of }";_; Var(rp — 7;) using the notation of the present paper.
Plant breeding experiments often use control treatments.

Following on from the work by Cox (1958), Kachlicka and Mejza (1995) examine
two row-column designs with split plots, with either one whole plot containing the
control, or the subplot treatment being the control. They give the efficiency factors
of these designs. The present paper examines a simpler structure, based on Kachlicka
and Mejza’s first design.

The structure considered here consists of b blocks of 4 plots each, where the plots
in each block are arranged in a 2 x 2 row-column array. Kachlicka and Mejza (1995)
describe an experiment with this structure for comparing three levels of irrigation.
"This structure is also discussed by Singh and Dey (1979), Ipinyomi and John (1985)
and Bagchi et al. (1990).

Goodchild (1971) details two experiments carried out using trees as blocks. The
first experiment looks at the effect of light micro-climate on fruit colour and apple
size. There are three treatments including a control and blocks of size 2. In the
second experiment unknown fruit thinning compounds are compared with controls.
Here four trees are used as blocks, with a block size of 3. When the block size is 4,
this naturally extends to a 2 x 2 design, since trees can be divided into quarters by
the points of the compass. Spray treatments can then be applied to quarters.

In variety trials and plant breeding experiments, heterogeneity in two dimensions
can be accounted for by laying out b blocks each in a p X ¢ row-column array; see
Singh and Dey (1979), Srivastava (1981), Patterson and Robinson (1989) and John
and Williams (1995). Although rows and columns in such experiments usually contain
more than 2 plots, the results given in the present paper may be a pointer to what
happens more generally.

Bagchi et al. (1990) showed that if a nested row-column design satisfies the
following conditions then it is universally optimal:

(i) the number of times that treatment i appears in row j of a superblock [ is the
same for each j = 1,...,p (Bagchi et al., 1990, label p as the number of rows within
a block),

(ii) columns form a balanced block design.

Bagchi et al. (1990) call such designs BN-RC (Balanced Nested Row and Co-
lumn designs which are non-binary in blocks and the rows form blocks of a balanced
block design). Morgan and Uddin (1993) note that conditions (i) and (ii) give a de-
sign with completely symmetric information matrix (C-matrix), and maximum trace.
Keifer (1975) points out that the two previous points are sufficient for universal opti-
mality. Morgan and Uddin (1993) have also emphasized requirements (i) and (ii)
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for universal optimality, calling designs with these properties BNRCs (Balanced Ne-
sted Row-Column Designs which are non-binary in blocks and possibly non-binary in
rows). Chang and Notz (1994) also showed the same conditions to give universally
optimal nested row-column designs.

Bailey (1993), Morgan and Uddin (1993), and Bagchi et al. (1990) have com-
pared classes of designs, and examined the implications of recovering and combining
information from the other strata. Chang and Notz (1994) also compare classes of
designs but only for the fixed effects analysis. The authors cited in this paragraph con-
sider all treatment contrasts and .do not look at the case of control vs. test treatment
contrasts.

Bailey (1993) compares Semi-Latin squares (row-column designs with nested
plots) with the best Incomplete Block Designs. Under the fixed effects model the
best IBD gives lower average variance. After recovering inter-block information and
combining, a criterion is given in terms of the variances for choosing the ‘better’ de-
sign. Similarly, after recovering further information from the row and column strata
and combini'ng, another criterion is given for choosing the better design.

Morgan and Uddin (1993) look at superblocks with nested rows and columns.
They show that BNRCs are superior to Balanced Incomplete Block Designs with
nested rows and columns (BIBRC) under the fixed effects model. The BIBRC designs
are binary in blocks and have a completely symmetric information matrix. After
recovering row, column and block strata information and combining, they give a
criterion for choosing between a ‘Series A’ BIBRC and a ‘Series A’ BNRC (which has
rows forming blocks of a balanced incomplete block design). The reader should refer
to the paper for the definitions of ‘Series A’ BIBRC and a ‘Series A’ BNRC.

Bagchi et al. (1990) also consider superblocks with nested rows and columns.
They provide an example of a non-binary design which is better than a binary design
under the fixed effects model. Under the mixed effects model they give the criterion
for choosing between a binary nested row-column design with completely symmetric
C-matrix (BIB-RC) and a BN-RC design.

Following the methods for comparing designs described by Bailey (1993), Morgan
and Uddin (1993) and Bagchi et al. (1990), the present paper shows the criterion
required for one non-binary design to be better than another non-binary design in
terms of giving lower variances for treatment vs. control comparisons in the nested
row-column design setup. One design satisfies condition (i) given previously, but
neither design satisfies condition (ii).
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2. The Designs

Consider a Balanced Incomplete Block Design (BIBD) named A, with v treatments
(labelled = 1,...,v) arranged in b = v(v — 1)/2 blocks each of size 2. Now consider
a nested row-column design A’, constructed from A. Each square in A’ is termed a
‘superblock’:

AN = {;;v ) :{z,y} is a block in A} repeated ¢ times,

where
- { 1 %fv%sodd,
2 ifviseven
Treatment O is the control and « and y are test treatments. There are cv(v —1)/2
superblocks. John and Williams (1995) say that a connected design is one that cannot
be split up into groups of blocks where treatments in one group are different from
treatments in any other group. This design is therefore connected. This implies that
every treatment contrast can be estimated from the plot stratum.
Now consider a third design I", which is also a row-column design, and is formed

as follows: :
z |0 ' v—1 .
= { REERE Th=Rl u} repeated (T) ¢ times.

I" consists of cu(v — 1)/2 superblocks and is a connected design.
Note that 5" = cv(v — 1) and 7§ = cv(v ~ 1) are the replications of the control
treatment in design A’ and T respectively. Also, 78" = c(v—1) and r"" = c(v — 1) are

the replications of the test treatments in design A’ and T, respectively.
Consider the variance of the estimated plot level contrasts (1 — 7,,), for designs
A’ and T', where 7; is effect of treatment . In general,

Var(ro — 74) = Var(rg — 7,,)

(for & =1,...,v) since treatments are all replicated a constant number of times, the
concurrence for all test treatment pairs is constant and the concurrence for a test
treatment with the control is constant. As is shown in Section 5, design T' always
gives a lower value for Var(rq — 7,) than design A’ at plot level. This is unintuitive,
since design I" departs the further from binarity. However, the result is confirmed by
what is shown in the papers by Bagchi et al. (1990) and Morgan and Uddin (1993).

The design with lower variance on the (79 — 7,) contrast is said to be the ‘bet-
ter’ design, since it provides more accurate estimates of the differences between test
treatments and the control. However, after combining information from row and co-
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lumn strata, which is the better design depends on a criterion involving the stratum
variances.

2.1. Contrasts

The information matrix, C, of a nested row-column design is

Cop NN, NN NN
q p prq
In Pearce (1976) notation, N"qN", N"pN‘I and NN a6 the ‘weighted concurrence’

matrices for rows, columns, and superblocks respectively, such that

N, = X'Z,,
N, =X'Z,,
N, = X'Zy,
where:
- rfisa ((v+1) x (v+1)) diagonal matrix containing (rg,r1,...,7s) for a
particular design,
- n is the total number of units (n = bpg),
- X is the (n x (v+ 1)) design matrix for treatments, with (z,7)’th entry equal
to 1 if plot ¢ contains treatment j and 0 otherwise,
— Zp is the (n x b) design matrix for superblocks, with (2, 7)’th entry equal to 1
if plot 7 is contained in superblock j and 0 otherwise,
— Zy, is the (n x bp) design matrix for rows, with (¢, j)’th entry equal to 1 if plot
7 is contained in row j and 0 otherwise,
— Z4 is the (n x bg) design matrix for columns, with (3, j)’th entry equal to 1 if
plot 7 is contained in column j and 0 otherwise,
— p and q are the number of rows and columns in each superblock.
I define contrasts ws,...,w,, which are appropriate for designs A’ and I as
follows,

wll . (,U,_lz—lv-l)ﬁl)'“1)"'1——_1))
wy = (0,1,-1,0,0,0,...,0),
(“'é = (0)1)13_27[),0,""0)7

UJ; = (07171717"'717_(7)_1))1
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where w; (j = 1,...,v) is a vector of size ((v+1) x v). These are mutually orthogonal.
I shall show in Sections 3 and 4 that each w; is an eigenvector of Cr—¢ for both design
A’ and T, with corresponding eigenvalue ¢;.

Pearce et al. (1974) and Pearce (1983) define basic contrasts of an Incomplete
Block Design in terms of eigenvectors of the matrix Cr~¢. They are estimated inde-
pendently. This definition can be extended to Nested Row-Column Designs.

Pearce (1983) considers a set of eigenvectors, where pg = r31 /v/n, pip; = 0 and
p;pj =1fori,j =0,...,0v. These are

1
B ! = R 7—1,“1,_1,—1;_17"'7-—1 7
P1 \/55(\/5 )
p{?. = 7(0 1 11070707"'30)7
P3 = \_/:(0)1;1 =2,0,0,...,0),
= L0111, —(v—1))

Pearce (1983) defines the basic contrasts z1,...,z,. These are such that zy =r/\/n
and z; = r%pj for j = 1,...,v, and they satisfy zgr_‘szj = 0 and z}r"szj = 1.
Pearce (1983) says that the basic contrasts are independent. The basic contrasts are

eigenvectors of Cr—° i.e.
S=0, Py S
Cr°z; =¢;z,,
where ¢; is the canonical efficiency factor corresponding to the basic contrast z; in

the plot stratum. Pearce et al. (1974) also detail these basic contrasts but name

them as ¢, ...,c,.

’ ’ . ’
Aol =vrl and rA =T if we let 7 = 7%, then

le = ” —2;:3('07_]-;_17—11_1:_17""_1)’
, r

Z; = 5(0,1,——1,0,0,0,---;0)7

Zl3 = \/g(o’]') 1,"‘2,0101---a0)x

T
o = —_ L1, 1, —(v—1
Zy 'U(’U—l)(O’L » 51) (U ))a

. 5 )
Since z; =rzp;, r} =wr
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Since wj is a multiple of z; it can be seen that
Cr_éwj = £;wj, (1)

where ¢; is the canonical efficiency factor corresponding to contrast wj, in the plot
stratum. The contrasts ws,...,w; are estimated independently if ¢ # j, because
they are multiples of the basic contrasts. To simplify things it is easier to work with
eigenvectors wi, ..., w,.

See Nelder (1965) and James and Wilkinson (1971) for a discussion of canonical
efficiency factors. Nelder (1965) finds the canonical efficiency factors in all strata as
eigenvalues of the information matrix. He does not, however, name these eigenvalues
as canonical efficiency factors. James and Wilkinson (1971) give details of the canoni-
cal decomposition method. They state that ‘canonical efficiency factors measure the
extent of nonorthogonality’.

Most authors refer to canonical efficiency factors specifically as those found for
the plot stratum; they are thought of as the amount of information available at plot
level from a contrast. However, canonical efficiency factors can be found for a contrast
in the row, column, and superblock strata. Houtman and Speed (1983) define general
balance as the concept that the information matrices for the designs formed from
the rows, columns and superblocks, are spanned by the same eigenvectors. These
matrices are of the forms

4
C. = NolNp
P q
!
C,=r°- N, N,
! p
and
Cb = 1"s n NbNg
pq
respectively.

Designs A’ and T are generally balanced and have the same basic contrasts. So,
the contrast w; is an eigenvector of some of the component parts of the C-matrix
(namely the weighted concurrence matrices) postmultiplied by r=°. This gives the
eigenvalues corresponding to the contrast w; in the row, column, and superblock
strata respectively. That is, w; is an eigenvector of

(Rell) -
q 3

which gives the eigenvalue for the contrast in the row stratum. Contrast w; is also
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(59
p

which gives the eigenvalue for the contrast in the column stratum. Contrast w; is
also an eigenvector of
=hiahe By BN
pq

which gives the eigenvalue for the contrast in the superblock stratum. The eigenvalues
are the same for w; as for the corresponding basic contrast. The canonical efficiency
factor, CEFgs;, for a contrast w; in stratum S, for a nested row-column design, is
given by

an eigenvector of

CEFsp; = EVss;,

CEFg; = EVg;—CEFsg;,

CEFgj = EVg;—CEFsg;,

CEFp; = EVp;—CEFg; — CEFg; — CEFsg;,

where S = P,C, R, SB represent the plot, column, row and superblock strata, respec-
tively. EVg; is the eigenvalue of the weighted concurrence matrix post-multiplied by
r—% for contrast w; in strata S = C, R, SB, and is the eigenvalue of the information
matrix post-multiplied by r~¢ for contrast w; in the plot stratum.

The canonical efficiency factors for stratum S are the same for contrasts ws, . .., w,
since the design is formed from a BIBD. Since less effort is needed to compute the
canonical efficiency factors for the wy contrast than any of the remaining ws, ..., w,

contrasts, it is simpler to calculate canonical efficiency factors for wsy only.

3. Statistical properties of design A’

Examine superblocks in which treatments 1 and 2 occur (either together or separa-
tely):

(_J1 10 110 210 ] ) B
A—{O 5 0y R repeated ¢ times with y = 3,... ,v.

The eigenvalues and canonical efficiency factor tables for the design A’ are in Table 1
and Table 2.

Contrast wy is orthogonal to superblocks, giving an eigenvalue of 0. However,
averaging the wy contrast over the superblocks, then averaging over treatments, gives
an eigenvalue corresponding to wy. Contrast wq represents (71 —72), and is orthogonal
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Table 1. Eigenvalues for design A’

Stratum w1 ws . We
Superblock 0 %(Zj) %(%)
Rows 0 i i
Columns 0 1 i
Plots 1 1 1

Table 2. Canonical Efficiency Factors for design A’

Stratum w1 wy Wy

Superblock 0 1e=2) 1(3)
Rows 0 iG4) 1(z5)
Columns 0 %(Uﬁl) %(1:1)
Plots 1 L= (=)

to the c superblocks in which treatments 1 and 2 occur together, but is not orthogonal
to the c¢(v — 2) superblocks containing treatment 1 and the c(v — 2) superblocks
containing treatment 2. The eigenvalue for the wy contrast is the same for contrasts
w3, ..., Wy, so the eigenvalue entry for contrast wy, in the superblock stratum is

1 -2
EVSBk:Z(Z—l) fork:2,...,v.

The contrast w is orthogonal to rows giving an eigenvalue of 0. However, the wq
contrast is not orthogonal to rows containing treatment 1 and those rows containing
treatment 2. By averaging the contrast over rows and treatments, the eigenvalue is
found. Swapping the role of rows and columns gives the same design. So

1
EV5k=§fork=2,...,'uandS=R,C.

Recall that 7 is the vector of treatment effects, and that if CEFg; # 0 then there
is a least squares estimator of w7 using information from stratum S. We write this
estimator as (w;)s and its variance as Var(w;)s. The variance for contrast w7 in
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stratum S is found as

1 %
Var(w;)s = (C’Est > a:f_ ) £s, (2)

i
where r; is the replication of treatment 4 for 1 = 0,...,v, and &g is the particular

stratum variance. Thus the stratum variances in a nested row-column design are

— &p — the plot stratum variance,
— &g — the row stratum variance,
— & — the column stratum variance.

The variance of a control vs. treatment contrast is
.
Var(to — 7z)s = ;E(Var(wl)s + Var(wy)s)- (3)

A commonly used method to combine information from estimates made in two diffe-
rent strata is

Wj)s | (Wi
( ) o Var(Wj)S Vﬂr(w]')u
wj)su = T 1

Var(wj)s Var(wj)u

with corresponding variance

Var(wj)SU =

T (4)

1
Var(W;) s + Var(W;)u

where S, U and SU represent strata S, U and the combined stratum SU, respectively.
Using equations (2) and (3), at plot level

Var(rg —7,)p = ;12- (c(fﬁ ) e 4;(5}1)_—21))) €p. (5)

At row level, there is no information on the w; contrast, hence the combined plot and
row level information for Var(w:) remains the same as that for plot level information.
Combined plot and row information for Var(w,) is found using equation (4). The
combined plot and row information for Var(rg — 7.) on the A’ design can thus be
shown to be

1 2v dv(v—1)¢p
Vas(ro = 7o) = o (o + i g5, (6)

The combined plot and column information on contrasts Var(rg — 7,) in the A’
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design is

1 2 4o(v -1
vetro ~edeo = (c(v @ _(2)50 J)ffvsp) r N

The combined plot, row and column information for Var(rg—7,) in the A’ design
is

il %) dv(v — 1)¢géc
Var(rg — T5)pre = <c(’u ~1) + c(v — 2)¢péc + cv€plc + cvépér

)fp- (®)

0?2

4. Statistical properties of design I

In general design I' is of the form

r A0 [2]0] [w]0
RINEIDERREE

} repeated ¢ times with y = 3,... v.

The eigenvalue and canonical efficiency factor tables for the design I" are shown
in Tables 3 and 4.

Table 3. Eigenvalues for design I'

Stratum w1 wy Wy
Superblock 0 % %
1 1
Rows 0 o 5
1 1
Columns 0 3 5
Plots 1 1 1

Table 4. Canonical Efficiency Factors for design T’

Stratum w1 wa Wy
Superblock 0 : 3
Rows 0 0 0
Columns 0 0 0
Plots 1 % %
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Contrast w; on superblocks is easily seen to be orthogonal to all superblocks
giving an eigenvalue of 0. However, contrast ws is not orthogonal to those superblocks
containing test treatment 1 and those superblocks containing test treatment 2. So
averaging over superblocks and treatments gives

1
EVSBk = 5 for k = 2,...,7j.

The contrast w; is orthogonal to rows giving an eigenvalue of 0. Note that
contrast ws is not orthogonal to those rows containing test treatment 1 or those rows
containing test treatment 2 and it can easily be seen that for wy the row eigenvalue
in this design is the same as in the design A’ at row level. Therefore the appropriate
eigenvalue in design I is as above, and similarly the same result applies for columns,
since rows and columns can be interchanged to give the same design. Therefore

1
EVSk:§fork:Q,...,vandS:R,C’.

Using equations (2), and (3),

Var(tg —74)p = 0—12 (c—(;% + 2%) €p. (9)

Information does not exist on either the wy and w, contrast, at either row or column
level. In turn, this results in the combined plot and row information, plot and column
information, or plot, row and column information for Var(rq — Tz) being the same as
the plot value, given in equation (9).

5. Comparing A’ and T’
When comparing two designs, the ‘most binary’ design is expected to give the lower
variance. However, Bagchi et al. (1990) have shown that this is not always the case.

Comparing values for Var (7o — 1) at plot level, we use equations (5) and (9). Design
A’ has a greater value for Var(rg — 7,)p than design T', if and only if

5 (S e ()

v > 0.

This gives

Since this must always be true, the design I' must always provide the lower variance
for (1o — 7,)p and so is the better design.
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Designs A’ and I‘ can also be compared after combining plot and row information
(using equations 6 and 9). The value of Var(rg — 7,) pg is greater for design A’ than
for design T, if and only if

1 v do(v —1)¢ 1 2v 2v
7 (52 ) (gt o) e

v v—1)  c(v—2)g +cvép v
This gives
€p
1> .
33

Since for ‘good rows’ this must be true, design I" must always provide the lower
variance for (7o — 7;)pr and so is the better design.

Comparing A" and T after combining plots, rows and columns (using equations 8
and 9), the ‘better’ design for (7o — 7)prc, is dependent on the following criterion,

1/ 2 do(v — 1)ERé e 1/ v
v? <C(” -1) " c(v—2)¢péc + cv€pép + C”fPfC) ‘p> v? (C(U -1) i ¢ ) e
This gives
Ep  Ep
1> 25 22,
" En e

For ‘good rows’ % < 1 and for ‘good columns’ g—é < 1. Therefore,

— T is the better design if 0 < %f + %C_ <1,
— A’ is the better design if 1 < % + % < 9.

The value of Var(w;)p is the same for both designs. The design giving smaller
value of Var(w,)p, and larger value for the corresponding canonical efficiency factor,
is the better design. Tables 2 and 4 show that the value of Var(w,)p is larger in
design A’. Consequently, the value of Var(rg — 7, )p is larger in A/, implying that T"
is a better design.

At combined plot and row, plot and column, or plot, row and column in A’, the
value for Var(w;) is the same as the plot value. In the combining process, the value
of Var(w,) decreases in comparison to the plot level value, and hence the value of
Var(rg — 7;) decreases. In design I at combined plot and row, plot and column, or
plot, row and column any information on Var(w;), Var(w,) and Var(rg — 7,) equals
that achieved at plot level only. It is found, at combined plot and row level, that the
I design is always better. The same argument holds for combined plot and column
information. At combined plot, row and column level, the best design depends on
%ﬁ + %‘F— < 1 given that %: < 1and %1;— < 1. This means that the better design is
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- Tifo<ée 442 <1,
¢r o
- Nifl<éepéeca
¢r @ o
Often €p, £g and £, are unknown prior to an experiment. However, previous
experiments of similar sizes may be used to give an idea of the sizes of the stratum

variances, thus allowing a more informed choice of design, particularly if intending to
recover and combine row and column information.

6. Example

Kachlicka and Mejza (1995) give an example of a 2 x 2 nested row-column design
with 3 sub-plots per whole-plot. The potential experiment would observe potato
crop yields under the influence of three levels of irrigation (on whole plots) and three
levels of nitrogen (on sub-plots). Following on from their example and simplifying,
we consider a potential experiment where potato yield is observed only under the
influence of three levels of irrigation. The control treatment is absence of irrigation.

Consider the following Balanced Incomplete Block Design, A, with v = 3, b = 3,
r = 2, and block size 2. Call this particular Balanced Incomplete Block Design A;.

12
A =|23
31

Design A; leads to the construction of A] as below. The design is repeated once
since v = 3 is odd.

A = 10 210 310
1 02 013 01
The contrasts are
wi . [37_17_13—1]7
wy = [0,1,-1,0],
wg = [0,1,1,~2].

The variances are summarized in Table 5.

There is no information on contrast wj in either the row or the column strata, so
when combining information from other strata, no extra information is achieved and
the value for Var(w;) is just the value found at plot level. Combining plot and row
information; or plot and column information; or plot, row and column information for
contrast w3 leads to a decrease in the value for Var(wg). This has the overall effect



Nested row-column designs with a control 59

Table 5. Variances for design A}

Stratum Var(w;) Var(ws) Var(rp — 73)
Plot 3p 24¢ 3¢p
Row o0 8¢r o0
Column 00 8¢c .
24¢,, 36,46,
i R 3 () (Eater) e
24 L€
Plot & Column 3p (ﬁ%) (2?;;21 ) £p

- 246]’5(’1&1(’. 351’{&(,‘"’51)5(}'*’51-’513
;Pl‘)t’ Row & Co 3p (51{5(:+351’5c7+35k§1¢) (51:5(;4'351'5(:‘*'351){1:)§P
umn

of decreasing the combined value of Var(rg — 73) compared to the plot level value
Vi al‘(To - '7'3)
Sincec=1,T7 is

170(}2|0(]3]60

=112 03

Table 6 summarizes the variances.
No information exists for either contrast wj or w3 other than at plot level, so no
extra information is gained by combining. When comparing at plot level, since

3p>1Lp

then Var(1o — 7,)p is greater for A{ than for Ty, concluding that T'; is the better of
the two designs at plot level.

Table 6. Variances for design I'y

Stratum Var(wy) Var(ws) Var(rg—73)
Plot 3p 6¢p ¢p
Row o0 00 00
Column o0 0 00
Plot & Row 3Ep 6¢p ¥p
Plot & Column 3p 6¢ p ¥p

Plot, Row & Column ¥p 6¢p 1p
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Var(7g — 74) pr is greater in design A} than in 'y if and only if

¥r+&p
< <5R +35p> >ap

Rearranging, this gives 1 > £p /¢ and since realistically £ 5/€z should be less than
1, we see that T'; is the better design if 0 < £p/€z < 1. Swapping the role of rows
and columns, the same design is obtained (simply substitute £, for {5 above, where
& is the column variance).

The design A} has greater variance than I’y at combined plot, row and column
level if and only if

£p ( 3réc +Erér +Epéc > > €5,
§réc +38p€r + 3¢plc

After rearranging, this gives 1 > {p /€ + {p/€p. But, realistically, £p/¢p < 1 and

¢p/€c < 1, so the better design is

-Tifo< %‘g + % < 1 subject to {p/Ep < 1 and €p/€n < 1 being satisfied,
- Aifl< %;1 + % < 2 subject to {p/€x < 1and £p/E < 1 being satisfied.

To summarize, I'; is the better design for comparing no irrigation with the three
levels of irrigation at plot level. Design I'y is the better design for comparing no
irrigation with the three levels of irrigation at combined plot and row level or at
combined plot and column level. There is a choice of which is the better design for
comparing no irrigation with the three levels of irrigation at combined plot, row and
column level. This is dependant on the ratio of the stratum variances.

7. Conclusion

In the A} design, the w; contrast is orthogonal to all the superblocks, rows and
columns and as a result these strata provide no information on this contrast other
than from the plot stratum. The remaining contrasts, ws, ... ,w,, are not orthogonal
to all superblocks, all rows or all columns, and this results in non-zero entries in the
canonical efficiency factor table. For these contrasts, the row and column strata will
contain the most information (shown by larger canonical efficiency factors).

In the I' design the w; contrast does not provide information on contrasts in
the superblock, row and column strata. All the information is from the plot level
comparisons.

Two non-binary designs are compared. Under the fixed effects model design I' is
the better for estimating (79—7,) contrasts. In practice design I is still the better after
recovery and combination of plot and row, or plot and column information. However,
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after combination of plot, row and column information the situation depends on the
ratios of the stratum variances.
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Poréwnanie dwéch zagniezdzonych ukladéw wierszowo-kolumnowych
zawierajacych obiekt kontrolny

STRESZCZENIE

W pracy rozwazane sg zagniezdzone, wierszowo-kolumnowe uklady doéwiadczalne o
superblokach zawierajacych dwa wiersze 1 dwie kolumny. Dwie jednostki w kazdym
bloku przeznaczone sa na obiekt kontrolny, ktéry wystepuje raz w kazdym wierszu i
raz w kazdej kolumnie. Takie rozwigzanie umozliwia rozmieszczenie obiektéw bada-
nych na wiele réznych sposobéw. Praca po$wigcona jest dwu uktadom ktére nie sg
binarne, lecz ktére majg te same wektory wlasne jako kontrasty bazowe. Przedmio-
tem zainteresowania sg kontrasty pomiedzy badanymi obiektami a kontrols. Uklady
sg poréwnywane pod wzgledem analizy efektéw stalych, a nastgpnie pod wzgledem
odzyskiwania informacji z réznych warstw. Pokazano, ze gdy odzyska sie i polaczy in-
formacje z poziomu poletek, wierszy i kolumn, postaé uktadu posiadajacego mniejsza
wariancjg poréwnafi typu obiekt-kontrola zalezy od wariancji poletkowych, wierszo-
wych 1 kolumnowych.

SLOWA KLUCZOWE: kanoniczne wspétczynniki efektywnosci, kombinowanie infor-
macji, obiekt kontrolny, planowanie do$wiadczefi, zagniezdzone uklady wierszowo-
kolumnowe



